

Development Of RFID Sensor Based Traffic Signal For Emergency Vehicle

C N VIKAS¹, ADARSH R GOWDA², ABHILASH A³, JAI SURYA⁴,

ASHWINI M V⁵

¹Department of Mechanical Engineering, School of Mechanical Engineering, REVA University, India

²Department of Mechanical Engineering, School of Mechanical Engineering, REVA University, India

³Department of Mechanical Engineering, School of Mechanical Engineering, REVA University, India

⁴ Department of Mechanical Engineering, School of Mechanical Engineering, REVA University, India

⁵Assistant Professor, School of Mechanical Engineering, REVA University, India

Abstract— Traffic congestion in urban areas often leads to delays for emergency vehicles such as ambulances, fire trucks, and police cars, which can result in severe consequences. To address this issue, an RFID (Radio Frequency Identification) sensor-based traffic signal system is proposed to provide a priority-based traffic management solution. This system utilizes RFID tags attached to emergency vehicles and RFID readers installed at traffic signals. When an emergency vehicle approaches an intersection, the RFID reader detects its presence and communicates with the traffic signal controller to grant a green signal, ensuring a clear path for the vehicle. The system aims to minimize response time, reduce congestion for emergency vehicles, and enhance overall traffic efficiency. This automated solution enhances real-time traffic management by integrating IoT and intelligent transportation technologies.

Keywords— Smart Traffic signal for emergency vehicles, RFID sensor based traffic signal.

I. INTRODUCTION

Traffic congestion is one of the most significant challenges faced by urban areas worldwide. With the rapid increase in population and vehicle ownership, existing traffic management systems struggle to provide efficient mobility. Traditional traffic signal systems operate on predetermined timers that do not account for real-time

traffic density, leading to unnecessary delays and inefficiencies. Emergency vehicles, such as ambulances and fire trucks, often get stuck in traffic, resulting in delayed response times and potential loss of lives.

Overview of Traffic Management Challenges

In the modern era, urbanization and population growth have led to a significant increase in vehicular traffic, especially in metropolitan cities. Traffic congestion has become a pervasive issue, causing delays, increased fuel consumption, and environmental pollution. One of the most critical challenges in urban traffic management is ensuring the timely passage of emergency vehicles such as ambulances, fire trucks, and police cars. Delays in the arrival of these vehicles can have life-threatening consequences, particularly in medical emergencies where every second counts.

Traditional traffic signal systems operate on fixed timers or simple sensor-based mechanisms, which do not prioritize emergency vehicles. As a result, emergency vehicles often get stuck in traffic, leading to delayed response times. This problem is exacerbated in densely populated cities where traffic congestion is a daily occurrence. To address these challenges, there is a growing need for intelligent traffic management systems that can dynamically adjust traffic signals to prioritize emergency vehicles while maintaining smooth traffic flow for other vehicles.

The Role of RFID Technology in Traffic Management

Radio Frequency Identification (RFID) technology has emerged as a powerful tool for improving traffic management systems. RFID is a wireless communication technology that uses electromagnetic fields to automatically identify and track tags attached to objects. In the context of traffic management, RFID tags can be installed on emergency vehicles, and RFID readers can be placed at traffic signals to detect the presence of these vehicles.

How RFID Works in Traffic Signals

- **RFID Tags:** Each emergency vehicle is equipped with an RFID tag that contains a unique identification number. These tags are passive, meaning they do not require a power source and are activated by the RFID reader's electromagnetic field.
- **RFID Readers:** Installed at traffic signals, these readers detect the RFID tags when an emergency vehicle approaches. The reader captures the tag's unique ID and sends this information to a central control system.
- **Central Control System:** The control system processes the data from the RFID reader and adjusts the traffic signal timings to give priority to the emergency vehicle. For example, the traffic signal for the lane with the emergency vehicle turns green, while the signals for other lanes turn red.

Objective of the Project

The primary objective of this project is to develop an RFID-based intelligent traffic management system that:

- Prioritizes emergency vehicles such as ambulances, fire trucks, and police vehicles by automatically adjusting traffic signals.
- Reduces overall traffic congestion by optimizing signal durations based on vehicle density.
- Minimizes human intervention in traffic control by automating signal operations.
- Enhances road safety by reducing the chances of accidents caused by abrupt stopping at signals.
- Contributes to fuel and time efficiency, leading to reduced environmental pollution.

Working Principle of RFID Sensor-Based Traffic Signal

RFID technology works by using electromagnetic fields to identify and track RFID tags attached to vehicles. The proposed system consists of the following components:

- **RFID Tag:** Placed on emergency vehicles to help the system recognize and prioritize them.
- **RFID Reader:** Installed at traffic signal points to detect approaching emergency vehicles.
- **Microcontroller Unit:** Processes data from the RFID reader and controls traffic signals accordingly.
- **Traffic Signal Controller:** Adjusts the traffic light timing dynamically based on vehicle detection.

When an emergency vehicle with an RFID tag approaches an intersection, the RFID reader detects it and sends a signal to the microcontroller. The system then overrides the standard signal sequence and grants immediate passage by switching the traffic light to green for the emergency vehicle, clearing the road ahead.

Importance of RFID-Based Traffic Signal System

Implementing an RFID-based traffic signal system has numerous benefits, including:

- Efficiency in Emergency Situations: Faster response times for ambulances, fire trucks, and law enforcement vehicles.
- Reduction in Traffic Congestion: Optimized signal control improves vehicle flow and reduces unnecessary stops.
- Automation and Reliability: The system minimizes the need for manual traffic management, reducing human error.
- Environmental Benefits: Less idling time at traffic signals results in reduced fuel consumption and lower emissions.

I. LITERATURE SURVEY

Smart RF-based Traffic Light Control System for Emergency Vehicle Priority Conference Paper - February (2025) This paper proposes a smart traffic light control system that uses radio frequency (RF) transmission to prioritize emergency vehicles. The system employs a microcontroller to dynamically adjust traffic signals in response to emergency vehicle signals, ensuring a clear path for ambulances and reducing accidents at intersections. The system operates at a frequency of 434 MHz, enabling wireless communication between emergency vehicles and traffic lights. Future enhancements could include integration with in-flight controls to further optimize traffic management

P Phani Kumar ., et all . "Enhanced Traffic Management for Emergency Vehicle Information Transmission using a Wireless Sensor Network." (2023) Traffic congestion is a major issue in urban areas, especially during emergencies. This paper proposes a system that uses WSNs and RF sensors to detect emergency vehicle and adjust traffic signals accordingly. Proposed System. The system uses RF sensors to detect emergency vehicles and adjust traffic signals in real-time. The system also uses Priority-based MAC (PMAC) protocol to ensure fast communication between nodes. Traffic congestion is a major issue in urban areas, especially during emergencies. This paper proposes a system that uses WSNs and RF sensors to detect emergency vehicles and adjust traffic signals accordingly.

Syed noorjan and et al., "Traffic control system for emergency vehicles." (2024) Traffic congestion is a major urban areas, especially during emergencies. This paper proposes a system that uses RFID and a ultrasonic sensors to detect traffic density and prioritize emergency vehicles. The system uses RFID tags on emergency vehicles and ultrasonic sensors to monitor traffic density. When an emergency vehicle is detected, the system adjusts traffic signals to provide a clear path. The system is powered by Arduino and uses GSM and GPS modules for real-time data transmission. The proposed system effectively manages traffic congestion and ensures timely passage for emergency vehicles. Future work could include integrating sound waves and image processing for more accurate traffic management.

Kalpana, B., and et al. "Traffic monitoring for emergency vehicle using RFID".(2024) Traffic congestion in cities a Hyderabad, Pakistan, is a major issue, especially during emergencies. This paper introduces an IoT-based system to that uses RFID and ultrasonic sensors to detect traffic density and prioritize emergency vehicles. The system uses RFID tags on emergency vehicles and ultrasonic sensors to monitor traffic density. When an emergency vehicle is detected, the system adjusts traffic signals to provide a clear path. The system is powered by Arduino and uses GSM and GPS modules for real-time data transmission. Traffic congestion in cities like Hyderabad, Pakistan, is a major issue, especially during emergencies.

Aafia Gul Siddiqu . et al. "IoT-based Smart Traffic Signal System Prioritizing Dense of the Traffic and Emergency Vehicles."(2024) Traffic congestion is a major issue in urban areas, especially during emergencies. This paper to a proposes a system that uses RFID and AI to detect traffic density and prioritize emergency vehicles.

Aafia Gul Siddiqu . et al. "IoT-based Smart Traffic Signal System Prioritizing Dense of the Traffic and Emergency Vehicles."(2024) Traffic congestion is a major issue in urban areas, especially during emergencies. This paper to a proposes a system that uses RFID and AI to detect traffic density and prioritize emergency vehicles. The system uses RFID tags on emergency vehicles and AI-based vehicle counting to monitor traffic density. When an emergency vehicle is detected, the system adjusts traffic signals to provide a clear path. The system is powered by Raspberry Pi and uses IoT for real-time data transmission. Future work could include integrating sound waves and image processing for more accurate traffic management.

Subrata Paul ., and et al. "Smart Traffic Signal Management for a Urban Efficiency and Safety "Traffic congestion is a major issue in urban areas, especially during emergencies. This paper proposes a system to that uses ultrasonic and LiDAR sensors to detect traffic density and prioritize emergency vehicles. The system uses ultrasonic and LiDAR sensors to monitor traffic density and adjust traffic signals in real-time. The system also uses cloud-based servers for traffic light timing predictions. Traffic congestion is a major issue in urban areas, especially during emergencies. This paper proposes a system that uses ultrasonic and LiDAR sensors to detect traffic density and prioritize emergency vehicles. The proposed system effectively manages traffic congestion and ensures timely passage for emergency vehicles.

Trupti Dongarwar and N. H. Pitale."Review-Comparative Study on Traffic Actuated Signal System for Traffic of a Management System" (2024) Traffic congestion is a growing problem due to increasing vehicle numbers and to this poor infrastructure. Traditional traffic systems fail to adapt to real-time conditions, leading to delays, especially to for emergency vehicles. This paper explores various technologies to improve traffic management, focusing on RFID and ultrasonic sensors for dynamic traffic. The proposed system uses RFID tags on emergency vehicles and ultrasonic sensors to detect traffic density. When an emergency vehicle approaches, the RFID reader detects it, and the system adjusts traffic signals to provide a clear path.

RFID and ultrasonic sensors to detect emergency vehicles and adjust traffic signals accordingly. The system uses RFID tags on emergency vehicles and ultrasonic sensors to monitor traffic density. When an emergency vehicle is detected, the system adjusts traffic signals to provide a clear path. The system is powered by Arduino and uses GSM and GPS modules for real-time data transmission. The proposed system effectively manages traffic congestion and ensures timely passage for emergency vehicles.

Sandip D. Satav ., et al. "An Examination of Emergency Vehicle Traffic Management and Control Systems"(2025)The integration of machine learning in transportation and emergency response systems is transforming how traffic is managed during emergencies. Efficient traffic management is crucial for minimizing response times ensuring the safety of emergency responders and the public. The authors emphasize the importance of swift emergency vehicle response, particularly in medical emergencies and law enforcement, and explore the challenges and solutions in managing traffic for emergency vehicles. The paper underscores the transformative potential of machine learning and advanced traffic management systems in enhancing emergency response capabilities.

Low Kai Kee ., and et al. "Smart Traffic Light Monitoring System for Emergency using Arduino". (2021) Traffic congestion is a growing problem, especially for emergency vehicles like ambulances, fire trucks, and police cars. The paper proposes a smart traffic light system that dynamically adapts to traffic conditions, prioritizing emergency vehicles to ensure faster and safer passage through intersections. The system uses Arduino Uno and 433 MHz RF modules to create a low-cost, efficient traffic light prototype. The prototype demonstrates the potential to reduce delays and improve the efficiency of emergency services, with positive feedback from usability testing. Future work could focus on adapting the system to real-world traffic scenarios and exploring alternative communication technologies.

Buhari Ugbede Umar., and et al. "A Smart Density Based Traffic Control System with Barricades and Emergency Vehicles Clearance". (2021)Traffic congestion is a significant problem in Nigeria, caused by factors such as poor road infrastructure, lack of adherence to traffic laws, and insufficient traffic management systems. The paper proposes a smart density-based traffic control system that uses barricades and emergency vehicle clearance to improve traffic flow and reduce human intervention. The system is designed to replace manual traffic control, prioritize emergency vehicles, and reduce traffic violations. The system's ability to reduce human intervention and improve response times for emergency vehicles makes it a valuable contribution to traffic management in urban areas.

Dr. K. Phani Srinivas ., et al. "Traffic Monitoring and Signal and Controlling using RFID for Emergency Vehicles".(2024) Traffic congestion is a significant problem in urban areas, especially during emergencies when ambulances need to navigate through busy intersections. The paper proposes a smart traffic control system that uses RFID technology to detect emergency vehicles and adjust traffic signals in real-time to prioritize their passage .The system is designed to minimize delays in medical assistance, potentially saving lives during critical situations. The system's ability to dynamically adjust traffic signals based on real-time conditions makes it a valuable contribution to smart city infrastructure.

Meghana B S ., and et all. "Comprehensive Traffic Management System: Real-time traffic data analysis using RFID" (2023) Traffic congestion, emergency vehicle delays, red signal violations, vehicle breakdowns, and accidents are major issues in urban areas. The proposed Comprehensive Traffic Management System (CTMS) uses RFID and analytics to address these issues in real-time. The system is designed to be cost-effective and easy to implement, making it suitable for smart city initiatives. The proposed system is designed to be cost-effective and easy to implement, making it a viable solution for smart city initiatives. By integrating multiple functionalities, the system addresses a wide range of traffic-related issues, from congestion and emergency vehicle passage to traffic violations and vehicle breakdowns.

Ameeth R ., and et al . "Traffic Control System using RFID Technology"(2019) Traffic congestion is a major issue in metropolitan cities, particularly affecting emergency services like ambulances .The proposed system uses RFID technology and a mobile app to control traffic signals dynamically, allowing ambulances to pass through intersections without delay .The system ensures that ambulances can reach hospitals quickly, potentially saving lives during critical situations. By integrating multiple functionalities, the system addresses a wide range of traffic-related issues, from congestion and emergency vehicle passage to traffic violations and vehicle breakdowns. The system is designed to replace manual traffic control, prioritize emergency vehicles, and reduce traffic violations

Buvani Pai ., and et al. "Adaptive Traffic Signal System for Emergency Vehicle".(2023) Traffic congestion in urban areas, especially in India, delays emergency vehicles, leading to increased response times and potential loss of life. The proposed system uses RFID technology to detect emergency vehicles and dynamically adjust traffic signals to give them priority. The system is cost-effective, reliable, and scalable, making it suitable for implementation in Indian cities. The system dynamically adjusts traffic signals to ensure that emergency vehicles can pass through intersections without delay, potentially saving lives. The system is scalable and can be integrated into existing traffic infrastructure, making it a viable solution for urban areas with high traffic congestion.

II. DESIGN INSPIRATION

The design inspiration for an **RFID sensor-based traffic signal system for emergency vehicles** comes from the need to ensure that emergency vehicles, such as ambulances, fire trucks, and police cars, can navigate through traffic efficiently and safely. This system leverages **Radio Frequency Identification (RFID)** technology to optimize traffic flow during emergencies and reduce response time.

Here are the key design inspirations:

Priority for Emergency Vehicles:

1. **Problem:** Emergency vehicles often face delays at traffic signals, which can result in critical response time being wasted. The existing system doesn't account for urgent situations where every second matters.
2. **Inspiration:** The goal was to create a system that automatically detects emergency vehicles approaching an intersection and gives them priority by changing the traffic signal to green. This eliminates the need for emergency drivers to wait at red lights.

RFID Technology for Efficient Detection:

1. **Problem:** Detecting emergency vehicles at a distance can be challenging, especially in heavy traffic. Visual or auditory recognition systems might not be fast enough.
2. **Inspiration:** RFID sensors are used to detect emergency vehicles in real-time. By placing RFID tags on emergency vehicles and RFID readers at traffic lights, the system can automatically identify when an emergency vehicle is nearby. This allows for quick, automated decision-making in traffic control.

Automation and Real-Time Response:

1. **Problem:** Manual intervention, such as drivers turning signals on or off, can cause delays and errors, particularly when the emergency vehicle is far from the signal.
2. **Inspiration:** The design aims to automate the process. Once the RFID tag from an emergency vehicle is detected by the sensor, the traffic light system can instantaneously adjust the signal to ensure the vehicle can pass without delay. The system can respond to emergencies in real-time without the need for human intervention.

Minimizing Disruptions to Other Traffic:

1. **Problem:** Giving priority to emergency vehicles can disrupt normal traffic flow, causing congestion and delays.
2. **Inspiration:** The RFID-based system is designed to ensure that emergency vehicles are given priority only when necessary, while minimizing disruption to other traffic. For example, the system can temporarily hold a green light for the emergency vehicle or cycle other lights efficiently without causing too much delay to non-emergency traffic.

Reliability and Scalability:

1. **Problem:** Existing traffic control systems are sometimes vulnerable to failures or require complex infrastructure changes.
2. **Inspiration:** The RFID-based system is simple to install and integrate into existing traffic signal frameworks. It also provides a reliable, low-maintenance solution that can be scaled up across cities and towns. RFID tags are relatively inexpensive and long-lasting, making the system cost-effective in the long run.

1. **Problem:** Emergency vehicles must be able to reach their destination quickly while ensuring safety for other drivers and pedestrians.
2. **Inspiration:** The RFID-based system helps ensure emergency vehicles can reach their destinations without cutting through heavy traffic or risking accidents. It also can synchronize with other traffic management systems to ensure the safety of all road users while still giving the emergency vehicle priority.

Smart City Integration:

1. **Problem:** Many modern cities are evolving into smart cities with interconnected systems.
2. **Inspiration:** The RFID-based traffic signal system fits into the broader concept of smart cities by utilizing IoT (Internet of Things) technology to optimize traffic flow. These systems can be integrated with other smart infrastructure, such as real-time traffic monitoring, predictive analytics, and coordinated signals across large areas.

Key Features of the RFID-Based System:

1. **RFID Tags on Emergency Vehicles:** A small RFID tag installed on the vehicle emits a unique ID signal.
2. **RFID Sensors at Traffic Lights:** These sensors detect the approaching emergency vehicle when it is within range of the signal.
3. **Signal Priority:** Upon detection, the system automatically prioritizes the emergency vehicle, turning the light green or providing an unobstructed path.
4. **Real-Time Communication:** The system communicates with nearby intersections to coordinate signal changes and prevent collisions or unnecessary delays.

The above picture represents our project setup design where the dimensions of the frame work consist of 4*4Feet length and width followed by the pillars down the frame work for four corners to set the frame work at certain height from the ground for the purpose of underframe wiring using jumper cables and the circuit wires where there is a junction which contains four-way intersection where each road contains of 28cm long and 18.5cm width followed by the traffic signal poles all four sides of 1feet height consist of LED signal indicators followed by RFID sensor placed 33cm before the signal pole where the complete circuit is controlled by aurdino controller board and from the controller board one of the output port is connected to laptop with the controller cable to analyze the process that is running currently running in the frame work using Arudino software setup

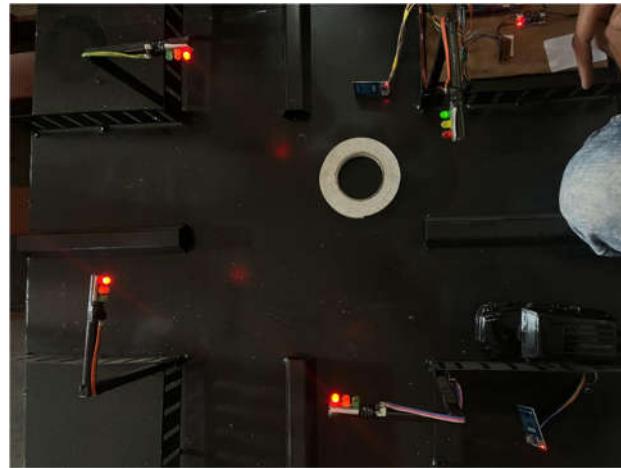


Fig: Frame work

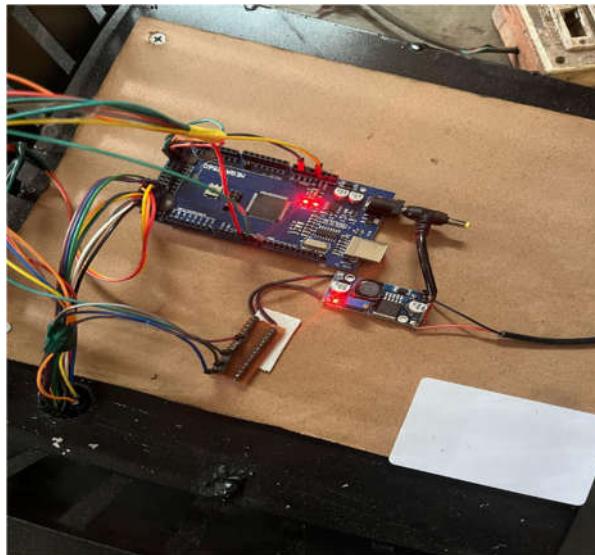


Fig: Controller board

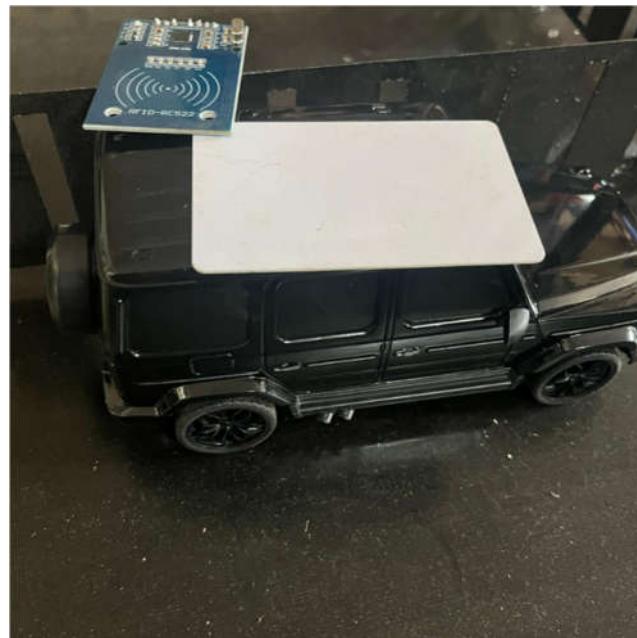


Fig: RFID tag placed on ambulance

VIII. CONCLUSION

The implementation of an RFID sensor-based traffic signal system for emergency vehicles offers a smart and efficient solution to urban traffic congestion, especially in critical situations where every second counts. By using RFID tags on emergency vehicles and RFID readers at traffic intersections, the system can automatically detect approaching emergency vehicles and prioritize their movement by switching traffic lights in their favor. This reduces delays, improves response times, and potentially saves lives. Moreover, the system enhances road safety by minimizing the chances of accidents during emergency responses. Overall, this technology-driven approach demonstrates how smart traffic management can support essential services and contribute to a more responsive urban infrastructure.

The authors acknowledge the Project Coordinators of the School of Mechanical Engineering, REVA University, for their invaluable guidance and support. Gratitude is extended to Dr. Niranjan Hiremath, Head of Department, Department of Mechatronics Engineering, School of Mechanical Engineering, REVA University for his guidance and encouragement. Special thanks are due to Dr. K S Narayanaswamy, Director, School of Mechanical Engineering, REVA University. The authors express their thanks to Dr. P Shyama Raju, Chancellor, REVA University, for the opportunity.

REFERENCES

- [1] **Yang, S., Xu, W., & Sun, Y. (2019).** Design of an intelligent traffic control system for emergency vehicles based on RFID and A* algorithm. *IEEE Access*, 7, 130117- 130127. DOI: 10.1109/ACCESS.2019.2939472
- [2] **Sarma, D., Deka, P., & Deka, J. (2020).** Arduino-based traffic signal control for emergency vehicles using RFID technology. *International Journal of Engineering Research and Technology*, 13(6), 431-434.
- [3] Bhate, S. V., Kulkarni, P. V., Lagad, S. D., Shinde, M. D., & Patil, S. (2018). IoT- based Intelligent Traffic Signal System for Emergency vehicles. In 2018 Second International Conference on Inventive Communication and Computational Technologies(ICICCT) (pp.788-793).IEEE. DOI: 10.1109/ICICCT.2018.8473210
- [4] Bhate, S. V., Kulkarni, P. V., Lagad, S. D., Shinde, M. D., & Patil, S. (2018). IoT- based Intelligent Traffic Signal System for Emergency vehicles. In 2018 Second International Conference on Inventive Communication and Computational Technologies(ICICCT) (pp.788-793).IEEE. DOI: 10.1109/ICICCT.2018.8473210
- [5] Bhate, S. V., Kulkarni, P. V., Lagad, S. D., Shinde, M. D., & Patil, S. (2018). IoT- based Intelligent Traffic Signal System for Emergency vehicles. In 2018 Second International Conference on Inventive Communication and Computational Technologies(ICICCT) (pp.788-793).IEEE. DOI: 10.1109/ICICCT.2018.8473210
- [6] **Wiering, M., Veenen, J., Vreeken, J., & Koopman, A. (2004).** Intelligent Traffic Light Control. *University of Utrecht, Netherlands*.
- [7] Naik, T., Roopalakshmi, R., Divya Ravi, N., Jain, P., Sownya, B. H., & Manichandra. (2018). RFID-Based Smart Traffic Control Framework for Emergency Vehicles. In 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT) (pp. 398-401). IEEE DOI: 10.1109/ICICCT.2018.8473001
- [8] **Iyyappan, S., & Nandagopal, V. (2013).** Automatic Accident Detection and Ambulance Rescue with Intelligent Traffic Light System. *International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering*, 2(4), 1447-1452
- [9] **Harshitha, K. M., Lakhitha, L., Taranum, L., Mamatha, G., & Divya, K. V. (2017).** Automatic Street Light Control, Fault Detection, and Traffic Density Control. In *8th One Day National Conference on Innovation and Research in Information Technology*.
- [10] **Solanke, D., Jadhav, M., Mandlik, S., & Jogdand, A. (2016).** Intelligent Traffic Light and Automatic Street Lighting System According to Traffic Density. *International Journal of Research in Engineering and Advanced Technology*, 4(2), 1-5.
- [11] Shaalan, A. S. A., & Crocok, M. S. (2016). Smart Traffic Light Control System for Emergency Ambulance. *International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)*, 5(8), 1-5
- [12][12] Kumar, N., Rahman, S. S., & Dhakad, N. (2020). Fuzzy Inference Enabled Deep Reinforcement Learning-Based Traffic Light Control for Intelligent Transportation Systems. *IEEE Transactions on Intelligent Transportation Systems*, 21(4), 1524- 1535. DOI: 10.1109/TITS.2019.2915521
- [13] **Devi, P., & Anila, S. (2020).** Intelligent Ambulance with Automatic Traffic Control. In *2020 International Conference on Computing and Information Technology (ICCIT)* (pp.374-377).IEEE. DOI: [10.1109/ICCIT-1441.2020.00074](https://doi.org/10.1109/ICCIT-1441.2020.00074)
- [14] Devi, P., & Anila, S. (2020). Intelligent Ambulance with Automatic Traffic Control. In *2020 International Conference on Computing and Information Technology (ICCIT)* (pp.374-377).IEEE. DOI: 10.1109/ICCIT-1441.2020.00074
- [15] Devi, P., & Anila, S. (2020). Intelligent Ambulance with Automatic Traffic Control. In *2020 International Conference on Computing and Information Technology (ICCIT)* (pp.374-377).IEEE. DOI: 10.1109/ICCIT-1441.2020.00074