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ABSTRACT 
 

Blockchain technology relies heavily on cryptographic hashing for ensuring data integrity, transaction security, and 

tamper resistance. However, with increasing data volume and demand for real-time processing, traditional hashing 

mechanisms often struggle to balance speed and security. This paper proposes and evaluates a novel Hybrid Hash 

Tree architecture that integrates multiple hash algorithms to optimize both performance and cryptographic strength. 

By combining the efficiency of lightweight hash functions with the robustness of secure hashing algorithms, the hybrid 

model aims to accelerate block validation while maintaining high levels of security. Through experimental analysis 

and performance benchmarking, the study compares various algorithmic combinations to identify optimal 

configurations suitable for cloud-integrated blockchain environments. The results demonstrate that the proposed 

hybrid approach significantly enhances transaction speed without compromising security, offering a scalable solution 

for next-generation blockchain systems. 
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I. INTRODUCTION 

 

Blockchain has emerged as a revolutionary technology 
for secure, decentralized data management across diverse 
domains, including finance, healthcare, and supply chain. 
At the heart of blockchain’s security and integrity lies the 
concept of cryptographic hashing. Hash trees, particularly 
Merkle trees, are widely used in blockchain to verify the 
consistency and integrity of data blocks. However, with 
the increasing volume of transactions and the growing 
need for real-time processing, conventional hash-based 
mechanisms often encounter performance bottlenecks. 
This creates a pressing need for enhanced hashing 
frameworks that can offer both speed and security. 

To address these challenges, this study explores the 
design and evaluation of Hybrid Hash Trees, which 
integrate multiple hashing algorithms in a layered or 
parallel configuration. The goal is to combine the speed 
of lightweight algorithms with the robustness of 
cryptographically secure ones. By strategically selecting 
and combining hash functions, the proposed model aims 
to reduce hash computation time while maintaining 
strong resistance against attacks such as collisions, 
preimage attacks, and tampering. This paper analyzes 

various algorithmic combinations and evaluates their 
performance in cloud-based blockchain environments, 
where scalability and speed are crucial. The research 
contributes to developing a more efficient and secure 
blockchain infrastructure that can meet the evolving 
demands of modern digital systems. 

As blockchain applications continue to grow in scale and 
complexity, especially in cloud and distributed 
environments, optimizing the performance of core 
components such as hashing becomes critical. Traditional 
hash trees like Merkle Trees rely on a single hash function 
throughout their structure. While this simplifies 
implementation, it limits flexibility and may not be 
optimal in environments with varying performance and 
security needs. Hybridizing hash functions offers a new 
direction—one that allows for customizing hashing 
strategies based on use cases, computational resources, 
and security requirements. 

Moreover, with emerging threats in cryptanalysis and the 
ever-evolving landscape of cyberattacks, relying solely 
on a single cryptographic algorithm may pose long-term 
risks. Hybrid Hash Trees introduce redundancy and 
algorithmic diversity, which not only enhance fault 
tolerance but also make the blockchain system more 
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resilient to potential vulnerabilities in individual hash 
functions. This paper systematically evaluates several 
hybrid combinations, measuring their impact on speed, 
security, and adaptability. The results aim to guide 
blockchain architects and researchers in choosing optimal 
hash strategies for secure and high-performance 
blockchain implementations. 

 

II.  Hash Algorithms  

1) MD5 (Message Digest 5) 

MD5 produces a 128-bit hash value and is one of the older 
hashing algorithms. It was once widely used for 
checksums and integrity verification. However, it is now 
considered cryptographically broken due to its 
vulnerability to collision attacks (i.e., two different inputs 
can produce the same hash). As a result, MD5 is not 
recommended for secure applications, including 
blockchain. 

 

                 Fig(1): MD5 Hash Generation Flow 

2) SHA-1 (Secure Hash Algorithm 1) 

SHA-1 generates a 160-bit hash and was developed by the 
NSA. It was widely used in SSL certificates and digital 

signatures. However, like MD5, SHA-1 is no longer 
considered secure due to demonstrated collision  

 

 

 

 

 

 

 

 

 

                    

  

                           

         

    

                Fig(2): SHA-1 WorkFlow 

vulnerabilities. Many systems have moved away from 
SHA-1 in favor of more secure alternatives. 

3) SHA-2 (Secure Hash Algorithm 2 Family) 

SHA-2 is a widely used cryptographic hash family that 
includes variants like: 

 SHA-224 
 SHA-256 
 SHA-384 
 SHA-512 

Among these, SHA-256 is extensively used in blockchain 
systems like Bitcoin for hashing blocks and transactions. 
SHA-2 offers high resistance against known attacks and 
is computationally efficient, making it a standard choice 
for secure hashing. 
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             Fig(3): SHA-256 Work Flow 

4) SHA-3 (Keccak) 

SHA-3, based on the Keccak algorithm, is the latest 
member of the SHA family. It uses a different 
construction (sponge function) compared to SHA-2 and 
offers strong resistance to collision and preimage attacks. 
SHA-3 is suitable for systems requiring enhanced 
security, particularly where SHA-2's internal structure 
may pose risks. 

 

Fig(3): SHA-3Work Flow 

5) BLAKE and BLAKE2 

BLAKE and its improved version BLAKE2 are 
cryptographic hash functions known for their speed and 
security. BLAKE2 is faster than MD5, SHA-1, and SHA-
2, and provides comparable or better security. It is used 
in many blockchain-related applications and protocols 
where performance and flexibility are key requirements. 

 

Fig(4): BLAKE and BLAKE2 
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6) RIPEMD-160 

RIPEMD-160 is a 160-bit hash function and is used in 
some blockchain networks like Bitcoin (for example, in 
generating addresses). It offers a good balance of security 
and performance, though it is not as widely adopted as the 
SHA family in modern systems. 

 

                   Fig(4): RIPEMD-160 

 

III. COMPARISION 

Algorithm 
Output 
Size 
(bits) 

Relative 
Speed 
(Fastest → 
Slowest) 

Notes 

MD5 128 
 (Fastest) Insecure, but very 

fast 

BLAKE2 256/512 
(Fastest) Faster than MD5 

with modern CPUs 

SHA-1 160 
Moderate Faster than SHA-2 

but insecure 

RIPEMD-
160 

160 
Slow Slower than SHA-1 

but more secure 

SHA-2 
224-
512 

SHA-256) 
to  (SHA-
512) 

Security/performance 
tradeoff 

SHA-3 
224-
512 

(Slowest) Designed for 
security, not speed 

Table-1: Comparison of Algorithms  

 
Hash algorithms vary significantly in performance due to 
their design goals—some prioritize speed, while others 
emphasize security. MD5 is the fastest among these 
algorithms, but it is cryptographically broken and should 
not be used for security-sensitive applications. BLAKE2, 
however, outperforms even MD5 on modern hardware 
while providing strong security, making it the best choice 
for high-speed hashing. SHA-1 is faster than SHA-2 but 
has been deprecated due to vulnerabilities, 
while RIPEMD-160 is slower than SHA-1 but offers 
better resistance to attacks. 
The SHA-2 family (including SHA-256 and SHA-512) 
strikes a balance between speed and security, with SHA-
256 being widely adopted in applications like Bitcoin and 
TLS. SHA-3 (Keccak), the newest standard, is 
intentionally slower than SHA-2 due to its sponge 
construction, which enhances resistance to certain types 
of cryptographic attacks. While BLAKE2 is the fastest 
secure option, SHA-256 remains the most commonly 
used due to its proven security and hardware acceleration 
support. 
For applications requiring maximum speed (e.g., 
checksums, non-cryptographic uses), BLAKE2 or 
MD5 may be suitable, but SHA-256 or SHA-3 should be 
used where security is critical. If backward compatibility 
is needed, SHA-2 is the safest choice, 
whereas BLAKE2 is ideal for modern systems 
prioritizing both speed and security. 
 

IV. PERFORMANCE COMPARISON OF 

COMBINED HASH ALGORITHMS 

Combination 

Avg. 

Time 

(ms) 

Relative 

Speed 

Security 

Strength 

MD5 + SHA-1 320 ms Fast (Weak) 

SHA-1 + SHA-

256 
580 ms Moderate (Moderate) 

SHA-256 + SHA-

3 
890 ms Slow  (Strong) 

BLAKE2 + SHA-

256 
450 ms Fast (Strong) 

RIPEMD-160 + 

SHA-3 
920 ms Slowest (Strong) 

Table-2: Performance Comparison  

The comparison table outlines the performance and 
security of various cryptographic hash function 
combinations based on average execution time, relative 
speed, and security strength. From the data, we can 
observe a clear trade-off between speed and 
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cryptographic robustness. Algorithms like MD5 + SHA-
1 demonstrate exceptional speed (320 ms, rated) but fall 
short in terms of modern cryptographic standards, being 
labeled as (Weak) due to known vulnerabilities like 
collision attacks and pre-image weaknesses. 

In contrast, SHA-256 + SHA-3 and RIPEMD-160 + 
SHA-3 show significantly higher security strength , but at 
the cost of performance, with average times of 890 ms 
and 920 ms respectively. These combinations integrate 
modern, secure hashing schemes that are more resistant 
to attacks, especially against collision and length-
extension vulnerabilities. However, their slower 
performance makes them less suitable for high-
throughput or real-time systems unless security is the 
absolute priority. 

SHA-1 + SHA-256 lies somewhere in the middle, 
offering moderate speed (580 ms) and moderate security 
. This makes it a practical option for legacy systems 
transitioning toward stronger standards. However, it’s 
important to note that SHA-1 is increasingly discouraged 
in security-sensitive contexts due to known weaknesses, 
even when paired with SHA-256. 

The standout choice in this table is BLAKE2 + SHA-256, 
which offers a strong balance of both performance (450 
ms,) and security (Strong). BLAKE2, designed to be 
faster than MD5 and SHA-2 while providing excellent 
cryptographic strength, complements SHA-256 well, 
making this combination ideal for modern applications 
requiring both speed and resilience. Overall, the table 
highlights how choosing a hashing scheme involves 
balancing speed, compatibility, and security based on the 
specific requirements of a system or application. 

A. MD5 + SHA-1 

 
Fig(5):Combination of  MD5 + SHA-1 

 

A Merkle tree using MD5 + SHA-1 creates a two-tiered 
hashing structure for efficient data verification. At the 
base level, raw data blocks (Data1, Data2, etc.) are hashed 
individually using MD5, which provides fast computation 
but weak cryptographic security. These MD5 hashes are 
then paired and combined to form intermediate nodes. 
Finally, the top-level root hash is generated using SHA-
1, which offers marginally better security than MD5 
alone. While this structure allows quick integrity checks, 
it inherits the vulnerabilities of both algorithms—MD5 is 
prone to collision attacks, and SHA-1 has been 
deprecated for security-sensitive use. 
 
This hybrid approach might still be useful in non-critical 
applications like file deduplication or checksum 
validation in legacy systems where speed is prioritized 
over security. However, for modern cryptographic 
needs, stronger combinations like BLAKE2 + SHA-
256 are recommended. The Merkle tree visualization 
clearly shows the hierarchy: data blocks (green) feed into 
MD5 hashes (blue), which ultimately converge into a 
single SHA-1 root hash (red). This layered approach 
helps detect changes in any data block efficiently, even if 
the underlying algorithms are outdated. 
 
For secure implementations, replacing MD5 and SHA-1 
with SHA-3 or BLAKE3 would eliminate collision risks 
while maintaining performance. The trade-off between 
speed and security remains key—faster algorithms like 
MD5 suit low-risk scenarios, while robust hashes like 
SHA-256 are essential for sensitive data. The Merkle tree 
structure itself remains valid; only the hash functions 
need upgrading to meet modern standards. 
 
 
B. SHA-256 + SHA-3 
 

 
Fig(6):Combination of  SHA-256 + SHA-3 

 
The SHA-256 + SHA-3 Merkle tree provides a robust 
two-tiered hashing structure designed for maximum 
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security and data integrity verification. At the base level, 
individual transactions (Tx1, Tx2, etc.) are first hashed 
using SHA-256, which offers strong cryptographic 
protection against collisions. These transaction hashes are 
then paired and hashed again with SHA-256 to create 
intermediate nodes (SHA-256_A, SHA-256_B). Finally, 
the root hash is generated by applying SHA-3 (Keccak) 
to the combined intermediate hashes, adding an 
additional layer of security through its sponge 
construction that resists specialized attacks. This 
combination leverages SHA-256's widespread adoption 
and hardware acceleration while incorporating SHA-3's 
future-proof security design. 
 
This architecture is particularly valuable for blockchain 
systems and secure audit logs where tamper-evident data 
structures are critical. The Merkle tree's hierarchical 
nature allows efficient verification of any single 
transaction without processing the entire dataset – if Tx3 
is modified, for example, only SHA-256_B and the root 
hash need recomputing to detect the change. While 
computationally heavier than single-algorithm trees, 
the SHA-256 + SHA-3 combination provides exceptional 
defense against both current and theoretical attacks, 
making it suitable for high-security environments like 
financial ledgers or government record-keeping. 
The visualization demonstrates how security strengthens 
progressively up the tree: raw transactions (green) gain 
initial protection through SHA-256 (red), with the final 
root hash (purple) benefiting from SHA-3's advanced 
cryptographic properties. Modern implementations might 
optimize performance by processing branches in parallel, 
but the core principle remains – each layer's integrity 
depends on the one below it, creating a cascade of 
trust that makes tampering evident. For applications 
where quantum resistance becomes important, this 
structure could be further enhanced by replacing SHA-3 
with newer algorithms like SHAKE256 while 
maintaining the same tree topology. 
 

C.BLAKE2 + SHA-256  

 
Fig(7):Combination of  BLAKE2 + SHA-256  

 

The BLAKE2 + SHA-256 Merkle Tree is a hybrid 

cryptographic structure designed to balance speed and 

security. At its base, raw transactions (Tx1, Tx2, etc.) 

are first hashed using BLAKE2, an algorithm 

optimized for modern hardware that outperforms 

SHA-256 in speed while maintaining robust security. 

These individual hashes are then paired and hashed 

again with BLAKE2 to create intermediate nodes 

(Blake2_A, Blake2_B). Finally, the root hash is 

generated by applying SHA-256 to the concatenated 

intermediate BLAKE2 hashes. This two-tiered 

approach leverages BLAKE2’s efficiency for bulk 

hashing while relying on SHA-256’s widespread trust 

for final verification. 

 

BLAKE2’s design allows it to process data 

significantly faster than SHA-256—often by 30–50% 

on modern CPUs—making it ideal for applications 

requiring high throughput, such as blockchain 

networks or large-scale data audits. By using 

BLAKE2 for the initial and intermediate hashing 

layers, the tree reduces computational overhead 

without sacrificing integrity. The final SHA-256 step 

ensures compatibility with existing systems (like 

Bitcoin’s infrastructure) while adding a well-vetted 

security layer. This combination is particularly 

effective for real-time systems where latency matters 

but cryptographic robustness cannot be compromised. 

 

While BLAKE2 alone is secure, pairing it with SHA-

256 introduces defense-in-depth. BLAKE2’s 

resistance to length-extension attacks and its 

optimized performance make it a strong choice for the 

lower layers, while SHA-256’s conservative design 

and widespread adoption anchor the root hash. This 

dual-algorithm approach mitigates the risk of 

vulnerabilities specific to either hash function. For 

example, even if a theoretical weakness were 

discovered in BLAKE2, the SHA-256 root would 

require an attacker to compromise both algorithms 

simultaneously—a far more challenging feat. 

 

The modular design allows easy substitution of either 

algorithm. For instance, BLAKE3 could replace 

BLAKE2 for even greater speed, or SHA-3 could 

replace SHA-256 for enhanced quantum resistance. 

The Merkle tree’s hierarchical structure remains 

unchanged, demonstrating how hybrid approaches can 
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adapt to evolving cryptographic standards without 

overhauling entire systems. This future-proofing, 

combined with the performance-security trade-off, 

makes the BLAKE2 + SHA-256 Merkle Tree a 

compelling choice for modern applications. 

 

 

 
    Fig(7):Comparisions of Combinations  

 

The provided content appears to outline a basic 

algorithm structure named "Nike Algorithm: Event 

Comparison", though the details are minimal. The 

algorithm seems to focus on comparing events, with 

inputs and outputs that include transitions from a 

"Start" state to either "Start" or "Help." This suggests 

a simple decision-making or state-transition process, 

where the system may loop back to the beginning or 

seek assistance based on certain conditions. However, 

without additional context about the logic or rules 

governing these transitions, the algorithm's purpose 

remains unclear. The repeated structure of inputs and 

outputs implies a cyclical or recursive process, but 

further specifics are needed to understand its full 

functionality. 

The notes referencing Table 1 through Table 
7 indicate that additional data or references might be 
required to interpret the algorithm's behavior. These 
tables likely contain critical details, such as conditions 
for transitions, event definitions, or performance 
metrics, which are not included in the current content. 
Without these tables, the algorithm's practical 
application or significance cannot be determined. The 
mention of multiple tables suggests a structured 

approach to event comparison, possibly involving 
categorization, prioritization, or statistical analysis, 
but this is speculative without access to the referenced 
material. 
In summary, the Nike Algorithm as presented is a 
high-level framework lacking detailed 
implementation steps or contextual clarity. To fully 
understand its role—whether in event logging, user 
interaction, or another domain—more information is 
needed, particularly the contents of the noted tables 
and the criteria for the "Start" and "Help" transitions. 
The current outline serves as a placeholder for a more 
comprehensive system, emphasizing the need for 
expanded documentation to elucidate its design and 
utility. 

 

   
Fig(8):Comparisions of Combinations  

The image presents a bar graph comparing the hashing 
speeds (measured in MB/s) of four different 
cryptographic hash functions: MD5-SHA1, SHA1-
SHA256, SHA3/SHA-3 (Keccak), and BLAKE2-
SHA256. Each bar represents the throughput 
performance of these algorithms in terms of how many 
megabytes of data they can hash per second. The graph 
clearly labels the algorithms and uses distinct colors for 
easy differentiation. 

From the chart, BLAKE2-SHA256 exhibits the highest 
hashing speed, significantly outperforming all other 
algorithms with a speed close to 950 MB/s. This reflects 
BLAKE2's design goals: providing faster hashing than 
MD5, SHA-1, and SHA-2 while maintaining strong 
security guarantees. On the other hand, SHA3/SHA-3 
(Keccak) demonstrates the lowest speed, under 200 
MB/s, highlighting a known trade-off where SHA-3 
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prioritizes structural cryptographic robustness over raw 
performance. MD5-SHA1 and SHA1-SHA256 fall in the 
middle, with MD5-SHA1 being faster than SHA1-
SHA256, reflecting their lighter computation but older 
security standards. 

This performance comparison underscores the evolution 
of cryptographic hash functions: while newer algorithms 
like SHA-3 focus on enhanced security, they may come 
at the cost of speed. In contrast, algorithms like BLAKE2 
strike a balance by offering modern security with 
significantly higher efficiency, making them favorable 
for systems where performance is critical. 

    
        Fig(9):Comparisions of Combinations  

The radar chart titled "Hash Algorithm Comparison" 
provides a multi-dimensional view of four popular 
cryptographic hash function combinations: MD5 + SHA-
1, SHA-256, SHA-3, and BLAKE2 + SHA-256. It 
evaluates them based on five key attributes: Speed, 
Security, Hardware Support, Collision Resistance, and 
Legacy Compatibility. Each attribute is plotted as an axis, 
and the algorithms are visually represented by different 
colored polygons. 

From the chart, MD5 + SHA-1 performs strongly in terms 
of Speed and Legacy Compatibility, which reflects its 
long-standing use in older systems and applications. 
However, it scores poorly in Security and Collision 
Resistance, emphasizing its vulnerability to modern 
attacks. On the other hand, SHA-256 and SHA-3 
demonstrate strong Security and Collision Resistance, 
though SHA-3 slightly lags in Speed and Hardware 

Support, possibly due to its sponge construction model 
and relatively newer adoption in hardware accelerators. 

BLAKE2 + SHA-256 appears to provide the most 
balanced profile, scoring highly in nearly all categories, 
particularly in Speed, Security, and Collision Resistance, 
while also offering good Hardware Support. This makes 
it an excellent modern choice for applications that 
demand both performance and cryptographic strength. 
The chart clearly highlights the trade-offs among legacy 
compatibility, performance, and security that developers 
must consider when selecting a hashing algorithm for 
specific use cases. 

The radar chart evaluates five critical dimensions of hash 
algorithmperformance: Speed (throughput), Security (att
ack resistance), Hardware Support (optimization for 
CPUs/GPUs), Collision Resistance (uniqueness of 
outputs), and Legacy Compatibility (system support). 
Each axis represents one metric, scaled from 0 to 100, 
allowing direct comparison of strengths and weaknesses. 
For example, BLAKE2 + SHA-256 (green) forms a near-
symmetrical polygon, indicating balanced performance 
across all metrics, while SHA-256 + SHA-3 (purple) 
spikes sharply in Security and Collision Resistance but 
lags in Speed. 
 
The chart highlights inherent design trade-offs. MD5 + 
SHA-1 (red) dominates Speed and Legacy Compatibility 
but scores poorly in Security and Collision Resistance, 
reflecting its deprecated status. In contrast, SHA-256 + 
SHA-3 prioritizes security at the cost of speed, ideal for 
applications like financial systems where robustness 
outweighs performance needs. The BLAKE2 + SHA-
256 combination strikes a middle ground, offering near-
optimal speed and strong security—perfect for 
blockchain or cloud storage. 
 
The "fullness" of each polygon indicates overall 
performance. A larger area means better all-around 
utility. BLAKE2 + SHA-256’s expansive shape shows its 
versatility, while MD5 + SHA-1’s uneven, spiked shape 
reveals its niche (but risky) use case. The radar format 
makes it easy to spot dominance patterns—for instance, 
SHA-256 + SHA-3’s Security/Collision Resistance 
scores form a pronounced "peak," emphasizing its 
cryptographic strength. 

V. CONCLUSION 

The performance and security analysis of hash algorithm 
combinations reveals clear trade-offs between speed and 
robustness. MD5 + SHA-1 (320 ms) is the fastest but 
offers negligible security, making it unsuitable for 
modern applications. BLAKE2 + SHA-256 (450 ms) 
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strikes the best balance, delivering near-top speed  and 
strong security , ideal for blockchain or cloud storage. 
Meanwhile, SHA-256 + SHA-3 (890 ms) and RIPEMD-
160 + SHA-3 (920 ms) prioritize cryptographic strength 
over performance, suited for high-security systems like 
financial ledgers. 

VI. FUTURE ENHANCEMENTS 

Quantum-Resistant Upgrades: Replace SHA-256/SHA-3 
with post-quantum algorithms (e.g., SPHINCS+ or 
SHAKE256) for future-proofing.Hardware Optimization: 
Leverage GPU/FPGA acceleration for BLAKE3 + SHA-
256 to further reduce latency.Adaptive Hashing: Develop 
systems that dynamically switch algorithms based on 
workload (e.g., BLAKE2 for bulk data, SHA-3 for final 
verification).Collision Detection: Integrate tamper-
evident flags for weaker combinations (e.g., MD5) in 
legacy systems. 
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