
Optimizing Cloud-Based Blockchain Performance with Hybrid Hash Trees: A
Speed and Security Perspective

1V Uday Kumar, 2Kaila Shahu Chatrapati

1Research Scholar, JNTU Hyderabad, India.
2Professor , Department of CSE, JNTU, Hyderabad, India.

ABSTRACT

Blockchain technology relies heavily on cryptographic hashing for ensuring data integrity, transaction security, and

tamper resistance. However, with increasing data volume and demand for real-time processing, traditional hashing

mechanisms often struggle to balance speed and security. This paper proposes and evaluates a novel Hybrid Hash

Tree architecture that integrates multiple hash algorithms to optimize both performance and cryptographic strength.

By combining the efficiency of lightweight hash functions with the robustness of secure hashing algorithms, the hybrid

model aims to accelerate block validation while maintaining high levels of security. Through experimental analysis

and performance benchmarking, the study compares various algorithmic combinations to identify optimal

configurations suitable for cloud-integrated blockchain environments. The results demonstrate that the proposed

hybrid approach significantly enhances transaction speed without compromising security, offering a scalable solution

for next-generation blockchain systems.

Keywords: Blockchain, Hybrid , Cryptographic, lightweight

I. INTRODUCTION

Blockchain has emerged as a revolutionary technology
for secure, decentralized data management across diverse
domains, including finance, healthcare, and supply chain.
At the heart of blockchain’s security and integrity lies the
concept of cryptographic hashing. Hash trees, particularly
Merkle trees, are widely used in blockchain to verify the
consistency and integrity of data blocks. However, with
the increasing volume of transactions and the growing
need for real-time processing, conventional hash-based
mechanisms often encounter performance bottlenecks.
This creates a pressing need for enhanced hashing
frameworks that can offer both speed and security.

To address these challenges, this study explores the
design and evaluation of Hybrid Hash Trees, which
integrate multiple hashing algorithms in a layered or
parallel configuration. The goal is to combine the speed
of lightweight algorithms with the robustness of
cryptographically secure ones. By strategically selecting
and combining hash functions, the proposed model aims
to reduce hash computation time while maintaining
strong resistance against attacks such as collisions,
preimage attacks, and tampering. This paper analyzes

various algorithmic combinations and evaluates their
performance in cloud-based blockchain environments,
where scalability and speed are crucial. The research
contributes to developing a more efficient and secure
blockchain infrastructure that can meet the evolving
demands of modern digital systems.

As blockchain applications continue to grow in scale and
complexity, especially in cloud and distributed
environments, optimizing the performance of core
components such as hashing becomes critical. Traditional
hash trees like Merkle Trees rely on a single hash function
throughout their structure. While this simplifies
implementation, it limits flexibility and may not be
optimal in environments with varying performance and
security needs. Hybridizing hash functions offers a new
direction—one that allows for customizing hashing
strategies based on use cases, computational resources,
and security requirements.

Moreover, with emerging threats in cryptanalysis and the
ever-evolving landscape of cyberattacks, relying solely
on a single cryptographic algorithm may pose long-term
risks. Hybrid Hash Trees introduce redundancy and
algorithmic diversity, which not only enhance fault
tolerance but also make the blockchain system more

INDICA JOURNAL (ISSN:0019-686X) VOLUME 5 ISSUE 11 2024

PAGE NO: 163

resilient to potential vulnerabilities in individual hash
functions. This paper systematically evaluates several
hybrid combinations, measuring their impact on speed,
security, and adaptability. The results aim to guide
blockchain architects and researchers in choosing optimal
hash strategies for secure and high-performance
blockchain implementations.

II. Hash Algorithms

1) MD5 (Message Digest 5)

MD5 produces a 128-bit hash value and is one of the older
hashing algorithms. It was once widely used for
checksums and integrity verification. However, it is now
considered cryptographically broken due to its
vulnerability to collision attacks (i.e., two different inputs
can produce the same hash). As a result, MD5 is not
recommended for secure applications, including
blockchain.

 Fig(1): MD5 Hash Generation Flow

2) SHA-1 (Secure Hash Algorithm 1)

SHA-1 generates a 160-bit hash and was developed by the
NSA. It was widely used in SSL certificates and digital

signatures. However, like MD5, SHA-1 is no longer
considered secure due to demonstrated collision

 Fig(2): SHA-1 WorkFlow

vulnerabilities. Many systems have moved away from
SHA-1 in favor of more secure alternatives.

3) SHA-2 (Secure Hash Algorithm 2 Family)

SHA-2 is a widely used cryptographic hash family that
includes variants like:

 SHA-224
 SHA-256
 SHA-384
 SHA-512

Among these, SHA-256 is extensively used in blockchain
systems like Bitcoin for hashing blocks and transactions.
SHA-2 offers high resistance against known attacks and
is computationally efficient, making it a standard choice
for secure hashing.

INDICA JOURNAL (ISSN:0019-686X) VOLUME 5 ISSUE 11 2024

PAGE NO: 164

 Fig(3): SHA-256 Work Flow

4) SHA-3 (Keccak)

SHA-3, based on the Keccak algorithm, is the latest
member of the SHA family. It uses a different
construction (sponge function) compared to SHA-2 and
offers strong resistance to collision and preimage attacks.
SHA-3 is suitable for systems requiring enhanced
security, particularly where SHA-2's internal structure
may pose risks.

Fig(3): SHA-3Work Flow

5) BLAKE and BLAKE2

BLAKE and its improved version BLAKE2 are
cryptographic hash functions known for their speed and
security. BLAKE2 is faster than MD5, SHA-1, and SHA-
2, and provides comparable or better security. It is used
in many blockchain-related applications and protocols
where performance and flexibility are key requirements.

Fig(4): BLAKE and BLAKE2

INDICA JOURNAL (ISSN:0019-686X) VOLUME 5 ISSUE 11 2024

PAGE NO: 165

6) RIPEMD-160

RIPEMD-160 is a 160-bit hash function and is used in
some blockchain networks like Bitcoin (for example, in
generating addresses). It offers a good balance of security
and performance, though it is not as widely adopted as the
SHA family in modern systems.

 Fig(4): RIPEMD-160

III. COMPARISION

Algorithm
Output
Size
(bits)

Relative
Speed
(Fastest →
Slowest)

Notes

MD5 128
 (Fastest) Insecure, but very

fast

BLAKE2 256/512
(Fastest) Faster than MD5

with modern CPUs

SHA-1 160
Moderate Faster than SHA-2

but insecure

RIPEMD-
160

160
Slow Slower than SHA-1

but more secure

SHA-2
224-
512

SHA-256)
to (SHA-
512)

Security/performance
tradeoff

SHA-3
224-
512

(Slowest) Designed for
security, not speed

Table-1: Comparison of Algorithms

Hash algorithms vary significantly in performance due to
their design goals—some prioritize speed, while others
emphasize security. MD5 is the fastest among these
algorithms, but it is cryptographically broken and should
not be used for security-sensitive applications. BLAKE2,
however, outperforms even MD5 on modern hardware
while providing strong security, making it the best choice
for high-speed hashing. SHA-1 is faster than SHA-2 but
has been deprecated due to vulnerabilities,
while RIPEMD-160 is slower than SHA-1 but offers
better resistance to attacks.
The SHA-2 family (including SHA-256 and SHA-512)
strikes a balance between speed and security, with SHA-
256 being widely adopted in applications like Bitcoin and
TLS. SHA-3 (Keccak), the newest standard, is
intentionally slower than SHA-2 due to its sponge
construction, which enhances resistance to certain types
of cryptographic attacks. While BLAKE2 is the fastest
secure option, SHA-256 remains the most commonly
used due to its proven security and hardware acceleration
support.
For applications requiring maximum speed (e.g.,
checksums, non-cryptographic uses), BLAKE2 or
MD5 may be suitable, but SHA-256 or SHA-3 should be
used where security is critical. If backward compatibility
is needed, SHA-2 is the safest choice,
whereas BLAKE2 is ideal for modern systems
prioritizing both speed and security.

IV. PERFORMANCE COMPARISON OF

COMBINED HASH ALGORITHMS

Combination

Avg.

Time

(ms)

Relative

Speed

Security

Strength

MD5 + SHA-1 320 ms Fast (Weak)

SHA-1 + SHA-

256
580 ms Moderate (Moderate)

SHA-256 + SHA-

3
890 ms Slow (Strong)

BLAKE2 + SHA-

256
450 ms Fast (Strong)

RIPEMD-160 +

SHA-3
920 ms Slowest (Strong)

Table-2: Performance Comparison

The comparison table outlines the performance and
security of various cryptographic hash function
combinations based on average execution time, relative
speed, and security strength. From the data, we can
observe a clear trade-off between speed and

INDICA JOURNAL (ISSN:0019-686X) VOLUME 5 ISSUE 11 2024

PAGE NO: 166

cryptographic robustness. Algorithms like MD5 + SHA-
1 demonstrate exceptional speed (320 ms, rated) but fall
short in terms of modern cryptographic standards, being
labeled as (Weak) due to known vulnerabilities like
collision attacks and pre-image weaknesses.

In contrast, SHA-256 + SHA-3 and RIPEMD-160 +
SHA-3 show significantly higher security strength , but at
the cost of performance, with average times of 890 ms
and 920 ms respectively. These combinations integrate
modern, secure hashing schemes that are more resistant
to attacks, especially against collision and length-
extension vulnerabilities. However, their slower
performance makes them less suitable for high-
throughput or real-time systems unless security is the
absolute priority.

SHA-1 + SHA-256 lies somewhere in the middle,
offering moderate speed (580 ms) and moderate security
. This makes it a practical option for legacy systems
transitioning toward stronger standards. However, it’s
important to note that SHA-1 is increasingly discouraged
in security-sensitive contexts due to known weaknesses,
even when paired with SHA-256.

The standout choice in this table is BLAKE2 + SHA-256,
which offers a strong balance of both performance (450
ms,) and security (Strong). BLAKE2, designed to be
faster than MD5 and SHA-2 while providing excellent
cryptographic strength, complements SHA-256 well,
making this combination ideal for modern applications
requiring both speed and resilience. Overall, the table
highlights how choosing a hashing scheme involves
balancing speed, compatibility, and security based on the
specific requirements of a system or application.

A. MD5 + SHA-1

Fig(5):Combination of MD5 + SHA-1

A Merkle tree using MD5 + SHA-1 creates a two-tiered
hashing structure for efficient data verification. At the
base level, raw data blocks (Data1, Data2, etc.) are hashed
individually using MD5, which provides fast computation
but weak cryptographic security. These MD5 hashes are
then paired and combined to form intermediate nodes.
Finally, the top-level root hash is generated using SHA-
1, which offers marginally better security than MD5
alone. While this structure allows quick integrity checks,
it inherits the vulnerabilities of both algorithms—MD5 is
prone to collision attacks, and SHA-1 has been
deprecated for security-sensitive use.

This hybrid approach might still be useful in non-critical
applications like file deduplication or checksum
validation in legacy systems where speed is prioritized
over security. However, for modern cryptographic
needs, stronger combinations like BLAKE2 + SHA-
256 are recommended. The Merkle tree visualization
clearly shows the hierarchy: data blocks (green) feed into
MD5 hashes (blue), which ultimately converge into a
single SHA-1 root hash (red). This layered approach
helps detect changes in any data block efficiently, even if
the underlying algorithms are outdated.

For secure implementations, replacing MD5 and SHA-1
with SHA-3 or BLAKE3 would eliminate collision risks
while maintaining performance. The trade-off between
speed and security remains key—faster algorithms like
MD5 suit low-risk scenarios, while robust hashes like
SHA-256 are essential for sensitive data. The Merkle tree
structure itself remains valid; only the hash functions
need upgrading to meet modern standards.

B. SHA-256 + SHA-3

Fig(6):Combination of SHA-256 + SHA-3

The SHA-256 + SHA-3 Merkle tree provides a robust
two-tiered hashing structure designed for maximum

INDICA JOURNAL (ISSN:0019-686X) VOLUME 5 ISSUE 11 2024

PAGE NO: 167

security and data integrity verification. At the base level,
individual transactions (Tx1, Tx2, etc.) are first hashed
using SHA-256, which offers strong cryptographic
protection against collisions. These transaction hashes are
then paired and hashed again with SHA-256 to create
intermediate nodes (SHA-256_A, SHA-256_B). Finally,
the root hash is generated by applying SHA-3 (Keccak)
to the combined intermediate hashes, adding an
additional layer of security through its sponge
construction that resists specialized attacks. This
combination leverages SHA-256's widespread adoption
and hardware acceleration while incorporating SHA-3's
future-proof security design.

This architecture is particularly valuable for blockchain
systems and secure audit logs where tamper-evident data
structures are critical. The Merkle tree's hierarchical
nature allows efficient verification of any single
transaction without processing the entire dataset – if Tx3
is modified, for example, only SHA-256_B and the root
hash need recomputing to detect the change. While
computationally heavier than single-algorithm trees,
the SHA-256 + SHA-3 combination provides exceptional
defense against both current and theoretical attacks,
making it suitable for high-security environments like
financial ledgers or government record-keeping.
The visualization demonstrates how security strengthens
progressively up the tree: raw transactions (green) gain
initial protection through SHA-256 (red), with the final
root hash (purple) benefiting from SHA-3's advanced
cryptographic properties. Modern implementations might
optimize performance by processing branches in parallel,
but the core principle remains – each layer's integrity
depends on the one below it, creating a cascade of
trust that makes tampering evident. For applications
where quantum resistance becomes important, this
structure could be further enhanced by replacing SHA-3
with newer algorithms like SHAKE256 while
maintaining the same tree topology.

C.BLAKE2 + SHA-256

Fig(7):Combination of BLAKE2 + SHA-256

The BLAKE2 + SHA-256 Merkle Tree is a hybrid

cryptographic structure designed to balance speed and

security. At its base, raw transactions (Tx1, Tx2, etc.)

are first hashed using BLAKE2, an algorithm

optimized for modern hardware that outperforms

SHA-256 in speed while maintaining robust security.

These individual hashes are then paired and hashed

again with BLAKE2 to create intermediate nodes

(Blake2_A, Blake2_B). Finally, the root hash is

generated by applying SHA-256 to the concatenated

intermediate BLAKE2 hashes. This two-tiered

approach leverages BLAKE2’s efficiency for bulk

hashing while relying on SHA-256’s widespread trust

for final verification.

BLAKE2’s design allows it to process data

significantly faster than SHA-256—often by 30–50%

on modern CPUs—making it ideal for applications

requiring high throughput, such as blockchain

networks or large-scale data audits. By using

BLAKE2 for the initial and intermediate hashing

layers, the tree reduces computational overhead

without sacrificing integrity. The final SHA-256 step

ensures compatibility with existing systems (like

Bitcoin’s infrastructure) while adding a well-vetted

security layer. This combination is particularly

effective for real-time systems where latency matters

but cryptographic robustness cannot be compromised.

While BLAKE2 alone is secure, pairing it with SHA-

256 introduces defense-in-depth. BLAKE2’s

resistance to length-extension attacks and its

optimized performance make it a strong choice for the

lower layers, while SHA-256’s conservative design

and widespread adoption anchor the root hash. This

dual-algorithm approach mitigates the risk of

vulnerabilities specific to either hash function. For

example, even if a theoretical weakness were

discovered in BLAKE2, the SHA-256 root would

require an attacker to compromise both algorithms

simultaneously—a far more challenging feat.

The modular design allows easy substitution of either

algorithm. For instance, BLAKE3 could replace

BLAKE2 for even greater speed, or SHA-3 could

replace SHA-256 for enhanced quantum resistance.

The Merkle tree’s hierarchical structure remains

unchanged, demonstrating how hybrid approaches can

INDICA JOURNAL (ISSN:0019-686X) VOLUME 5 ISSUE 11 2024

PAGE NO: 168

adapt to evolving cryptographic standards without

overhauling entire systems. This future-proofing,

combined with the performance-security trade-off,

makes the BLAKE2 + SHA-256 Merkle Tree a

compelling choice for modern applications.

 Fig(7):Comparisions of Combinations

The provided content appears to outline a basic

algorithm structure named "Nike Algorithm: Event

Comparison", though the details are minimal. The

algorithm seems to focus on comparing events, with

inputs and outputs that include transitions from a

"Start" state to either "Start" or "Help." This suggests

a simple decision-making or state-transition process,

where the system may loop back to the beginning or

seek assistance based on certain conditions. However,

without additional context about the logic or rules

governing these transitions, the algorithm's purpose

remains unclear. The repeated structure of inputs and

outputs implies a cyclical or recursive process, but

further specifics are needed to understand its full

functionality.

The notes referencing Table 1 through Table
7 indicate that additional data or references might be
required to interpret the algorithm's behavior. These
tables likely contain critical details, such as conditions
for transitions, event definitions, or performance
metrics, which are not included in the current content.
Without these tables, the algorithm's practical
application or significance cannot be determined. The
mention of multiple tables suggests a structured

approach to event comparison, possibly involving
categorization, prioritization, or statistical analysis,
but this is speculative without access to the referenced
material.
In summary, the Nike Algorithm as presented is a
high-level framework lacking detailed
implementation steps or contextual clarity. To fully
understand its role—whether in event logging, user
interaction, or another domain—more information is
needed, particularly the contents of the noted tables
and the criteria for the "Start" and "Help" transitions.
The current outline serves as a placeholder for a more
comprehensive system, emphasizing the need for
expanded documentation to elucidate its design and
utility.

Fig(8):Comparisions of Combinations

The image presents a bar graph comparing the hashing
speeds (measured in MB/s) of four different
cryptographic hash functions: MD5-SHA1, SHA1-
SHA256, SHA3/SHA-3 (Keccak), and BLAKE2-
SHA256. Each bar represents the throughput
performance of these algorithms in terms of how many
megabytes of data they can hash per second. The graph
clearly labels the algorithms and uses distinct colors for
easy differentiation.

From the chart, BLAKE2-SHA256 exhibits the highest
hashing speed, significantly outperforming all other
algorithms with a speed close to 950 MB/s. This reflects
BLAKE2's design goals: providing faster hashing than
MD5, SHA-1, and SHA-2 while maintaining strong
security guarantees. On the other hand, SHA3/SHA-3
(Keccak) demonstrates the lowest speed, under 200
MB/s, highlighting a known trade-off where SHA-3

INDICA JOURNAL (ISSN:0019-686X) VOLUME 5 ISSUE 11 2024

PAGE NO: 169

prioritizes structural cryptographic robustness over raw
performance. MD5-SHA1 and SHA1-SHA256 fall in the
middle, with MD5-SHA1 being faster than SHA1-
SHA256, reflecting their lighter computation but older
security standards.

This performance comparison underscores the evolution
of cryptographic hash functions: while newer algorithms
like SHA-3 focus on enhanced security, they may come
at the cost of speed. In contrast, algorithms like BLAKE2
strike a balance by offering modern security with
significantly higher efficiency, making them favorable
for systems where performance is critical.

 Fig(9):Comparisions of Combinations

The radar chart titled "Hash Algorithm Comparison"
provides a multi-dimensional view of four popular
cryptographic hash function combinations: MD5 + SHA-
1, SHA-256, SHA-3, and BLAKE2 + SHA-256. It
evaluates them based on five key attributes: Speed,
Security, Hardware Support, Collision Resistance, and
Legacy Compatibility. Each attribute is plotted as an axis,
and the algorithms are visually represented by different
colored polygons.

From the chart, MD5 + SHA-1 performs strongly in terms
of Speed and Legacy Compatibility, which reflects its
long-standing use in older systems and applications.
However, it scores poorly in Security and Collision
Resistance, emphasizing its vulnerability to modern
attacks. On the other hand, SHA-256 and SHA-3
demonstrate strong Security and Collision Resistance,
though SHA-3 slightly lags in Speed and Hardware

Support, possibly due to its sponge construction model
and relatively newer adoption in hardware accelerators.

BLAKE2 + SHA-256 appears to provide the most
balanced profile, scoring highly in nearly all categories,
particularly in Speed, Security, and Collision Resistance,
while also offering good Hardware Support. This makes
it an excellent modern choice for applications that
demand both performance and cryptographic strength.
The chart clearly highlights the trade-offs among legacy
compatibility, performance, and security that developers
must consider when selecting a hashing algorithm for
specific use cases.

The radar chart evaluates five critical dimensions of hash
algorithmperformance: Speed (throughput), Security (att
ack resistance), Hardware Support (optimization for
CPUs/GPUs), Collision Resistance (uniqueness of
outputs), and Legacy Compatibility (system support).
Each axis represents one metric, scaled from 0 to 100,
allowing direct comparison of strengths and weaknesses.
For example, BLAKE2 + SHA-256 (green) forms a near-
symmetrical polygon, indicating balanced performance
across all metrics, while SHA-256 + SHA-3 (purple)
spikes sharply in Security and Collision Resistance but
lags in Speed.

The chart highlights inherent design trade-offs. MD5 +
SHA-1 (red) dominates Speed and Legacy Compatibility
but scores poorly in Security and Collision Resistance,
reflecting its deprecated status. In contrast, SHA-256 +
SHA-3 prioritizes security at the cost of speed, ideal for
applications like financial systems where robustness
outweighs performance needs. The BLAKE2 + SHA-
256 combination strikes a middle ground, offering near-
optimal speed and strong security—perfect for
blockchain or cloud storage.

The "fullness" of each polygon indicates overall
performance. A larger area means better all-around
utility. BLAKE2 + SHA-256’s expansive shape shows its
versatility, while MD5 + SHA-1’s uneven, spiked shape
reveals its niche (but risky) use case. The radar format
makes it easy to spot dominance patterns—for instance,
SHA-256 + SHA-3’s Security/Collision Resistance
scores form a pronounced "peak," emphasizing its
cryptographic strength.

V. CONCLUSION

The performance and security analysis of hash algorithm
combinations reveals clear trade-offs between speed and
robustness. MD5 + SHA-1 (320 ms) is the fastest but
offers negligible security, making it unsuitable for
modern applications. BLAKE2 + SHA-256 (450 ms)

INDICA JOURNAL (ISSN:0019-686X) VOLUME 5 ISSUE 11 2024

PAGE NO: 170

strikes the best balance, delivering near-top speed and
strong security , ideal for blockchain or cloud storage.
Meanwhile, SHA-256 + SHA-3 (890 ms) and RIPEMD-
160 + SHA-3 (920 ms) prioritize cryptographic strength
over performance, suited for high-security systems like
financial ledgers.

VI. FUTURE ENHANCEMENTS

Quantum-Resistant Upgrades: Replace SHA-256/SHA-3
with post-quantum algorithms (e.g., SPHINCS+ or
SHAKE256) for future-proofing.Hardware Optimization:
Leverage GPU/FPGA acceleration for BLAKE3 + SHA-
256 to further reduce latency.Adaptive Hashing: Develop
systems that dynamically switch algorithms based on
workload (e.g., BLAKE2 for bulk data, SHA-3 for final
verification).Collision Detection: Integrate tamper-
evident flags for weaker combinations (e.g., MD5) in
legacy systems.

VII. REFERENCES

[1] Aumasson, J. P., Neves, S., Wilcox-O’Hearn, Z., &
Winnerlein, C. (2013). BLAKE2: Simpler, Smaller, Fast as
MD5. Cryptology ePrint Archive.

[2] Stevens, M., Bursztein, E., Karpman, P., Albertini, A., &
Markov, Y. (2017). *The First Collision for Full SHA-1*.
CRYPTO.

[3] Bertoni, G., Daemen, J., Peeters, M., & Van Assche, G.
(2013). *Keccak and the SHA-3 Standardization*. NIST.

[4] Dobraunig, C., Eichlseder, M., Mendel, F., & Schläffer, M.
(2016). *SHA-3 vs. SHA-2: A Performance Comparison*.
IEEE Transactions on Computers.

[5] Bernstein, D. J. (2012). The Salsa20 Family of Stream
Ciphers. LNCS.

[6] NIST. (2015). *FIPS 180-4: Secure Hash Standard (SHA-
1, SHA-2)*.

[7] NIST. (2022). *FIPS 202: SHA-3 Standard*.
[8] NIST. (2023). Post-Quantum Cryptography

Standardization Project.
[9] IETF. (2016). RFC 7693: The BLAKE2 Cryptographic

Hash and MAC.
[10] ISO/IEC. (2012). *ISO/IEC 10118-3: Hash-Functions

(RIPEMD-160)*.
[11] Intel. (2021). SHA Extensions in Intel® Processors:

Performance Analysis.
[12] ARM. (2022). Cryptographic Acceleration in ARMv8.
[13] Cloudflare. (2020). *Benchmarking BLAKE2 vs. SHA-3

on Web Servers*.
[14] AWS. (2023). Optimizing Hash Algorithms for Cloud

Storage.
[15] Google. (2019). Comparative Analysis of Hash Functions

in Chrome.
[16] Wang, X., Yao, A. C., & Yao, F. (2005). Cryptanalysis of

MD5 Collision Resistance. CRYPTO.
[17] Leurent, G., & Peyrin, T. (2020). *SHA-1 is a Shambles:

Practical Attacks*. USENIX Security.
[18] Kelsey, J., & Schneier, B. (2004). Second Preimages on n-

bit Hash Functions. LNCS.
[19] Aumasson, J. P. (2018). Too Much Crypto: The Case for

Lightweight Hashing. Real World Crypto.
[20] Bernstein, D. J., & Lange, T. (2017). Post-Quantum

Cryptography. Nature.

[21] NIST. (2024). *Draft SP 800-208: Recommendations for
Transitioning to Post-Quantum Cryptography*.

[22] Aumasson, J. P. (2023). BLAKE3: One Function to Rule
Them All? Black Hat USA.

[23] Microsoft. (2022). Hardware-Accelerated Hashing in
Azure Sphere.

[24] Ethereum Foundation. (2023). *Keccak-256 in Ethereum
2.0*.

[25] Linux Kernel. (2023). Adaptive Hashing for File System
Integrity.

INDICA JOURNAL (ISSN:0019-686X) VOLUME 5 ISSUE 11 2024

PAGE NO: 171

